Author:
da Costa Ana Sofia Henriques,Bessa Rui José Branquinho,Pires Virgínia Maria Rico,Rolo Eva Alves,Pinto Rui Manuel Amaro,Andrade Fontes Carlos Mendes Godinho,Prates José António Mestre
Abstract
Abstract
Background
In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed.
Results
In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level.
Conclusions
Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the desaturation and elongation pathway. The importance of devising custom-made feeding strategies taking into account the genetic background is, therefore, stressed by the results from this experiment.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference55 articles.
1. Bauchart D, Gruffat D, Durand D: Lipid absorption and hepatic metabolism in ruminants. P Nutr Soc. 1996, 55: 39-47. 10.1079/PNS19960010.
2. Bell AW: Lipid metabolism in the liver and selected tissues and in the whole body of ruminant animals. Prog Lipid Res. 1981, 18: 117-164.
3. Emery RS, Liesman JS, Herdt TH: Metabolism of long chain fatty acids by ruminant liver. J Nutr. 1992, 122: 832-837.
4. Gruffat D, Gobert M, Durand D, Bauchart D: Distinct metabolism of linoleic and linolenic acids in liver and adipose tissues of finishing Normande cull cows. Animal. 2011, 5: 1090-1098. 10.1017/S1751731111000073.
5. Prates JAM, Bessa RJB: Trans and n-3 fatty acids. Handbook of Muscle Foods Analysis. Edited by: Nollet LML, Tóldra F. 2009, Boca Raton: CRC Press, Taylor and Francis Group, 399-417.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献