Abstract
AbstractAdaptive e-learning is viewed as stimulation to support learning and improve student engagement, so designing appropriate adaptive e-learning environments contributes to personalizing instruction to reinforce learning outcomes. The purpose of this paper is to design an adaptive e-learning environment based on students' learning styles and study the impact of the adaptive e-learning environment on students’ engagement. This research attempts as well to outline and compare the proposed adaptive e-learning environment with a conventional e-learning approach. The paper is based on mixed research methods that were used to study the impact as follows: Development method is used in designing the adaptive e-learning environment, a quasi-experimental research design for conducting the research experiment. The student engagement scale is used to measure the following affective and behavioral factors of engagement (skills, participation/interaction, performance, emotional). The results revealed that the experimental group is statistically significantly higher than those in the control group. These experimental results imply the potential of an adaptive e-learning environment to engage students towards learning. Several practical recommendations forward from this paper: how to design a base for adaptive e-learning based on the learning styles and their implementation; how to increase the impact of adaptive e-learning in education; how to raise cost efficiency of education. The proposed adaptive e-learning approach and the results can help e-learning institutes in designing and developing more customized and adaptive e-learning environments to reinforce student engagement.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Education
Reference82 articles.
1. Akbulut, Y., & Cardak, C. (2012). Adaptive educational hypermedia accommodating learning styles: A content analysis of publications from 2000 to 2011. Computers & Education. https://doi.org/10.1016/j.compedu.2011.10.008.
2. Al-Chalabi, H., & Hussein, A. (2020). Analysis & implementation of personalization parameters in the development of computer-based adaptive learning environment. SAR Journal Science and Research., 3(1), 3–9. https://doi.org/10.18421//SAR31-01.
3. Aldosari, M., Aljabaa, A., Al-Sehaibany, F., & Albarakati, S. (2018). Learning style preferences of dental students at a single institution in Riyadh Saudi Arabia, evaluated using the VARK questionnaire . Advances in Medical Education and Practice. https://doi.org/10.2147/AMEP.S157686.
4. Ali, N., Eassa, F., & Hamed, E. (2019). Personalized Learning Style for Adaptive E-Learning System, International Journal of Advanced Trends in Computer Science and Engineering. 223-230. Retrieved June 26, 2020 from http://www.warse.org/IJATCSE/static/pdf/file/ijatcse4181.12019.pdf.
5. Alshammari, M., & Qtaish, A. (2019). Effective adaptive e-learning systems according to learning style and knowledge level. JITE Research, 18, 529–547. https://doi.org/10.28945/4459.
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献