Abstract
AbstractRecently, Borm and Driscoll published a commentary discussing grouping of Poorly Soluble particles of Low Toxicity (PSLTs) and the use of rats as an animal model for human hazard assessment of PSLTs (Particle and Fibre Toxicology (2019) 16(1):11). The commentary was based on the scientific opinion of several international experts on these topics. The general conclusion from the authors was a cautious approach towards using chronic inhalation studies in rats for human hazard assessment of PSLTs. This was based on evidence of inhibition of particle clearance leading to overload in the rats after high dose exposure, and a suggested over reactivity of rat lung cancer responses compared to human risk.As a response to the commentary, we here discuss evidence from the scientific literature showing that a) diesel exhaust particles, carbon black nanoparticles and TiO2 nanoparticles have similar carcinogenic potential in rats, and induce lung cancer at air concentrations below the air concentrations that inhibit particle clearance in rats, and b) chronic inhalation studies of diesel exhaust particles are less sensitive than epidemiological studies, leading to higher risk estimates for lung cancer. Thus, evidence suggests that the chronic inhalation study in rats can be used for assessing lung cancer risk insoluble nanomaterials.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference18 articles.
1. European Chemical Agency E. Guidance on information requiements and chemical safety assessement. Chapter R.8: Characterisation of dose [concentration]-response fro human health. 2012; ECHA-2010-G-19-EN.
2. Borm PJA, Driscoll KE. The hazards and risks of inhaled poorly soluble particles - where do we stand after 30 years of research? Part Fibre Toxicol. 2019;16(1):11. https://doi.org/10.1186/s12989-019-0294-4 https://www.ncbi.nlm.nih.gov/pubmed/30791931.
3. Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdorster G. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci. 2005;88(2):614–29. https://doi.org/10.1093/toxsci/kfi327 https://www.ncbi.nlm.nih.gov/pubmed/16177241.
4. Taxell P, Santonen T. Diesel Engine Exhaust. In: The Nordic Expert Group for Criteria Documentation of Gealth Risks from Chemicals and the Dutch Expert Committee on Occupational Safety, vol. 149. Gothenborg: Occupational and Environmental Medicine, Sweden; 2016. p. 1–147.
5. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. Chronic Inhalation Exposure of Wistar Rats and 2 Different Strains of Mice to Diesel-Engine Exhaust, Carbon-Black, and Titanium-Dioxide. Inhalat Toxicol. 1995;7(4):533–56. https://doi.org/10.3109/08958379509015211 ://WOS:A1995RA71300004.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献