Systematic error detection in experimental high-throughput screening

Author:

Dragiev Plamen,Nadon Robert,Makarenkov Vladimir

Abstract

Abstract Background High-throughput screening (HTS) is a key part of the drug discovery process during which thousands of chemical compounds are screened and their activity levels measured in order to identify potential drug candidates (i.e., hits). Many technical, procedural or environmental factors can cause systematic measurement error or inequalities in the conditions in which the measurements are taken. Such systematic error has the potential to critically affect the hit selection process. Several error correction methods and software have been developed to address this issue in the context of experimental HTS [1–7]. Despite their power to reduce the impact of systematic error when applied to error perturbed datasets, those methods also have one disadvantage - they introduce a bias when applied to data not containing any systematic error [6]. Hence, we need first to assess the presence of systematic error in a given HTS assay and then carry out systematic error correction method if and only if the presence of systematic error has been confirmed by statistical tests. Results We tested three statistical procedures to assess the presence of systematic error in experimental HTS data, including the χ2 goodness-of-fit test, Student's t-test and Kolmogorov-Smirnov test [8] preceded by the Discrete Fourier Transform (DFT) method [9]. We applied these procedures to raw HTS measurements, first, and to estimated hit distribution surfaces, second. The three competing tests were applied to analyse simulated datasets containing different types of systematic error, and to a real HTS dataset. Their accuracy was compared under various error conditions. Conclusions A successful assessment of the presence of systematic error in experimental HTS assays is possible when the appropriate statistical methodology is used. Namely, the t-test should be carried out by researchers to determine whether systematic error is present in their HTS data prior to applying any error correction method. This important step can significantly improve the quality of selected hits.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3