Multivariate meta-analysis of proteomics data from human prostate and colon tumours

Author:

Rosenberg Lina Hultin,Franzén Bo,Auer Gert,Lehtiö Janne,Forshed Jenny

Abstract

Abstract Background There is a vast need to find clinically applicable protein biomarkers as support in cancer diagnosis and tumour classification. In proteomics research, a number of methods can be used to obtain systemic information on protein and pathway level on cells and tissues. One fundamental tool in analysing protein expression has been two-dimensional gel electrophoresis (2DE). Several cancer 2DE studies have reported partially redundant lists of differently expressed proteins. To be able to further extract valuable information from existing 2DE data, the power of a multivariate meta-analysis will be evaluated in this work. Results We here demonstrate a multivariate meta-analysis of 2DE proteomics data from human prostate and colon tumours. We developed a bioinformatic workflow for identifying common patterns over two tumour types. This included dealing with pre-processing of data and handling of missing values followed by the development of a multivariate Partial Least Squares (PLS) model for prediction and variable selection. The variable selection was based on the variables performance in the PLS model in combination with stability in the validation. The PLS model development and variable selection was rigorously evaluated using a double cross-validation scheme. The most stable variables from a bootstrap validation gave a mean prediction success of 93% when predicting left out test sets on models discriminating between normal and tumour tissue, common for the two tumour types. The analysis conducted in this study identified 14 proteins with a common trend between the tumour types prostate and colon, i.e. the same expression profile between normal and tumour samples. Conclusions The workflow for meta-analysis developed in this study enabled the finding of a common protein profile for two malign tumour types, which was not possible to identify when analysing the data sets separately.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3