Cross validated serum small extracellular vesicle microRNAs for the detection of oropharyngeal squamous cell carcinoma

Author:

Mayne G. C.,Woods C. M.,Dharmawardana N.,Wang T.,Krishnan S.,Hodge J. C.,Foreman A.,Boase S.,Carney A. S.,Sigston E. A. W.,Watson D. I.,Ooi E. H.,Hussey D. J.ORCID

Abstract

Abstract Background Oropharyngeal squamous cell carcinoma (OPSCC) is often diagnosed at an advanced stage because the disease often causes minimal symptoms other than metastasis to neck lymph nodes. Better tools are required to assist with the early detection of OPSCC. MicroRNAs (miRNAs, miRs) are potential biomarkers for early head and neck squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no widespread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers. This could be due to variations in the collection, storage, pre-processing, and isolation of RNA, but several reports have indicated that the selection and reproducibility of biomarkers has been widely affected by the methods used for data analysis. The primary analysis issues appear to be model overfitting and the incorrect application of statistical techniques. The purpose of this study was to develop a robust statistical approach to identify a miRNA signature that can distinguish controls and patients with inflammatory disease from patients with human papilloma virus positive (HPV +) OPSCC. Methods Small extracellular vesicles were harvested from the serum of 20 control patients, 20 patients with gastroesophageal reflux disease (GORD), and 40 patients with locally advanced HPV + OPSCC. MicroRNAs were purified, and expression profiled on OpenArray™. A novel cross validation method, using lasso regression, was developed to stabilise selection of miRNAs for inclusion in a prediction model. The method, named StaVarSel (for Stable Variable Selection), was used to derive a diagnostic biomarker signature. Results A standard cross validation approach was unable to produce a biomarker signature with good cross validated predictive capacity. In contrast, StaVarSel produced a regression model containing 11 miRNA ratios with potential clinical utility. Sample permutations indicated that the estimated cross validated prediction accuracy of the 11-miR-ratio model was not due to chance alone. Conclusions We developed a novel method, StaVarSel, that was able to identify a panel of miRNAs, present in small extracellular vesicles derived from blood serum, that robustly cross validated as a biomarker for the detection of HPV + OPSCC. This approach could be used to derive diagnostic biomarkers of other head and neck cancers.

Funder

Garnett Passe and Rodney Williams Memorial Foundation

Flinders Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3