Author:
Block Annette,Debode Frédéric,Grohmann Lutz,Hulin Julie,Taverniers Isabel,Kluga Linda,Barbau-Piednoir Elodie,Broeders Sylvia,Huber Ingrid,Van den Bulcke Marc,Heinze Petra,Berben Gilbert,Busch Ulrich,Roosens Nancy,Janssen Eric,Žel Jana,Gruden Kristina,Morisset Dany
Abstract
Abstract
Background
Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information.
Description
The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available.
Conclusions
The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference65 articles.
1. James C: Global status of commercialized biotech/GM crops 2011. 2012, The International Service for the Acquisition of Agri-biotech Applications (ISAAA), [http://www.isaaa.org/resources/publications/briefs/43/executivesummary/pdf/Brief%2043%20-%20Executive%20Summary%20-%20English.pdf]
2. Stein AJ, Rodriguez-Cerezo E: International trade and the global pipeline of new GM crops. Nat Biotechnol. 2010, 28: 23-25.
3. Bonfini L, Kay S, Heinze P, Van den Eede G: Report on GMO detection identification and quantification methods submitted to collaborative studies. 2002, European Communities, EUR 20383 EN:1-29 [http://bookshop.europa.eu/en/report-on-gmo-detection-identification-and-quantification-methods-submitted-to-collaborative-studies-pbEUNA20383/]
4. Holst-Jensen A, Ronning SB, Lovseth A, Berdal KG: PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem. 2003, 375: 985-993.
5. Holst-Jensen A: Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnol Adv. 2009, 27: 1071-1082.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献