Application of an efficient Bayesian discretization method to biomedical data

Author:

Lustgarten Jonathan L,Visweswaran Shyam,Gopalakrishnan Vanathi,Cooper Gregory F

Abstract

Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD) method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI) discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD) yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference38 articles.

1. Cohen WW: Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning; Tahoe City, CA. Morgan Kaufmann; 1995:115–123.

2. Gopalakrishnan V, Ganchev P, Ranganathan S, Bowser R: Rule learning for disease-specific biomarker discovery from clinical proteomic mass spectra. Springer Lecture Notes in Computer Science 2006, 3916: 93–105. 10.1007/11691730_10

3. Yang Y, Webb G: On why discretization works for Naive-Bayes classifiers. Lecture Notes in Computer Science 2003, 2903: 440–452. 10.1007/978-3-540-24581-0_37

4. Lustgarten JL, Gopalakrishnan V, Grover H, Visweswaran S: Improving classification performance with discretization on biomedical datasets. Proceedings of the Fall Symposium of the American Medical Informatics Association; Washington, DC 2008, 445–449.

5. Boullé M: MODL: A Bayes optimal discretization method for continuous attributes. Machine Learning 2006, 65: 131–165. 10.1007/s10994-006-8364-x

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3