Expert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity

Author:

Assaad Rayan H.1ORCID,Hu Xi2,Hussein Mohab3

Affiliation:

1. Assistant Professor of Construction and Civil Infrastructure, Founding Director of the Smart Construction and Intelligent Infrastructure Systems (SCIIS) Lab, John A. Reif, Jr. Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (corresponding author). ORCID: .

2. Ph.D. Candidate, John A. Reif, Jr. Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102.

3. Ph.D. Candidate, John A. Reif, Jr. Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102,

Publisher

American Society of Civil Engineers (ASCE)

Subject

Building and Construction,Civil and Structural Engineering

Reference113 articles.

1. AASHTO (American Association of State Highway and Transportation Officials). 2017. LRFD bridge design specifications. Washington, DC: AASHTO.

2. Alaloul, W. S., M. S. Liew, and N. A. W. Zawawi. 2015. “Delphi technique procedures: A new perspective in construction management research.” In Vol. 802 of Applied Mechanics and Materials, 661–667. Stafa-Zurich, Switzerland: Trans Tech Publications Ltd.

3. Prediction of pile bearing capacity using XGBoost algorithm: Modeling and performance evaluation;Amjad M.;Appl. Sci,2022

4. Developing bridge deterioration models using an artificial neural network;Althaqafi E.;Infrastructures,2022

5. Bridge infrastructure asset management system: Comparative computational machine learning approach for evaluating and predicting deck deterioration conditions;Assaad R.;J. Infrastruct. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3