An automatic device for detection and classification of malaria parasite species in thick blood film

Author:

Kaewkamnerd Saowaluck,Uthaipibull Chairat,Intarapanich Apichart,Pannarut Montri,Chaotheing Sastra,Tongsima Sissades

Abstract

Abstract Background Current malaria diagnosis relies primarily on microscopic examination of Giemsa-stained thick and thin blood films. This method requires vigorously trained technicians to efficiently detect and classify the malaria parasite species such as Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) for an appropriate drug administration. However, accurate classification of parasite species is difficult to achieve because of inherent technical limitations and human inconsistency. To improve performance of malaria parasite classification, many researchers have proposed automated malaria detection devices using digital image analysis. These image processing tools, however, focus on detection of parasites on thin blood films, which may not detect the existence of parasites due to the parasite scarcity on the thin blood film. The problem is aggravated with low parasitemia condition. Automated detection and classification of parasites on thick blood films, which contain more numbers of parasite per detection area, would address the previous limitation. Results The prototype of an automatic malaria parasite identification system is equipped with mountable motorized units for controlling the movements of objective lens and microscope stage. This unit was tested for its precision to move objective lens (vertical movement, z-axis) and microscope stage (in x- and y-horizontal movements). The average precision of x-, y- and z-axes movements were 71.481 ± 7.266 μm, 40.009 ± 0.000 μm, and 7.540 ± 0.889 nm, respectively. Classification of parasites on 60 Giemsa-stained thick blood films (40 blood films containing infected red blood cells and 20 control blood films of normal red blood cells) was tested using the image analysis module. By comparing our results with the ones verified by trained malaria microscopists, the prototype detected parasite-positive and parasite-negative blood films at the rate of 95% and 68.5% accuracy, respectively. For classification performance, the thick blood films with Pv parasite was correctly classified with the success rate of 75% while the accuracy of Pf classification was 90%. Conclusions This work presents an automatic device for both detection and classification of malaria parasite species on thick blood film. The system is based on digital image analysis and featured with motorized stage units, designed to easily be mounted on most conventional light microscopes used in the endemic areas. The constructed motorized module could control the movements of objective lens and microscope stage at high precision for effective acquisition of quality images for analysis. The analysis program could accurately classify parasite species, into Pf or Pv, based on distribution of chromatin size.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference14 articles.

1. World Health Organization: World Malaria Report 2011. 2011, Geneva

2. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH: A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg. 2007, 77 (Suppl 6): 119-127.

3. Tek FB, Dempster AG, Kale I: Malaria parasite detection in peripheral blood images. Proceedings of the Machine Vision Conference:. 2006, 2006, 344-56. ; Edinburgh UK

4. Ross NE, Pritchard CJ, Rubin DM, Duse AG: Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput. 2006, 44: 427-436. 10.1007/s11517-006-0044-2.

5. Seman NA, Mat Isa NA, Li LC, Mohamed Z, Ngah UK, Zamli KZ: Classification of malaria parasite species based on thin blood smears using Multilayer Perceptron Network. Int J Comput Intern Manag. 2008, 1: 46-51.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3