Rapid Detection of Malaria Based on Hairpin-Mediated Amplification and Lateral Flow Detection

Author:

Zhang Yang1,Ke Lihui2,Sun Tao3,Liu Yang4,Wei Bo2,Du Minghua5

Affiliation:

1. Comprehensive Technical Service Center of Xuzhou Customs, Xuzhou Customs, Xuzhou 221000, China

2. Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

3. Nanjing Customs, Nanjing 210001, China

4. Department of Health and Quarantine, Nanjing Customs, Nanjing 210001, China

5. Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China

Abstract

Malaria is listed as one of the three most hazardous infectious diseases worldwide. Travelers and migrants passing through exit and entry ports are important sources of malaria pandemics globally. Developing accurate and rapid detection technology for malaria is important. Here, a novel hairpin-mediated amplification (HMA) technique was proposed for the detection of four Plasmodium species, including P. falciparum, P. vivax, P. malariae, and P. ovale. Based on the conserved nucleotide sequence of Plasmodium, specific primers and probes were designed for the HMA process, and the amplicon can be detected using lateral flow detection (LFD); the results can be read visually without specialized equipment. The specificity of HMA-LFD was evaluated using nucleic acids extracted from four different Plasmodium species and two virus species. The sensitivity of HMA-LFD was valued using 10× serial dilutions of plasmid containing the template sequence. Moreover, 78 blood samples were collected to compare HMA-LFD and qPCR. The HMA-LFD results were all positive for four different Plasmodium species and negative for the other two virus species. The sensitivity of HMA-LFD was tested to be near five copies/μL. The analysis of clinical samples indicated that the consistency of HMA-LFD and qPCR was approximately 96.15%. Based on these results, the HMA-LFD assay was demonstrated to be a rapid, sensitive, and specific technique for the detection of Plasmodium and has great advantages for on-site detection in low-resource areas and exit and entry ports.

Funder

National Natural Science Foundation of China

Nanjing Customs Scientific Research Funds

Chinese PLA General Hospital Science Foundation Youth Self-Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3