Multiple-platform data integration method with application to combined analysis of microarray and proteomic data

Author:

Wu Shicheng,Xu Yawen,Feng Zeny,Yang Xiaojian,Wang Xiaogang,Gao Xin

Abstract

Abstract Background It is desirable in genomic studies to select biomarkers that differentiate between normal and diseased populations based on related data sets from different platforms, including microarray expression and proteomic data. Most recently developed integration methods focus on correlation analyses between gene and protein expression profiles. The correlation methods select biomarkers with concordant behavior across two platforms but do not directly select differentially expressed biomarkers. Other integration methods have been proposed to combine statistical evidence in terms of ranks and p-values, but they do not account for the dependency relationships among the data across platforms. Results In this paper, we propose an integration method to perform hypothesis testing and biomarkers selection based on multi-platform data sets observed from normal and diseased populations. The types of test statistics can vary across the platforms and their marginal distributions can be different. The observed test statistics are aggregated across different data platforms in a weighted scheme, where the weights take into account different variabilities possessed by test statistics. The overall decision is based on the empirical distribution of the aggregated statistic obtained through random permutations. Conclusion In both simulation studies and real biological data analyses, our proposed method of multi-platform integration has better control over false discovery rates and higher positive selection rates than the uncombined method. The proposed method is also shown to be more powerful than rank aggregation method.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference21 articles.

1. Reif D, White B, Moore J: Integrated analysis of genetic, genomic and proteomic data. Expert Rev Proteomics 2004, 1: 67–75. 10.1586/14789450.1.1.67

2. Hamid J, Hu P, Roslin M, Ling V, Greenwood C, Beyene J: Data integration in genetics and genomics: methods and challenges. Human Genomics Proteomics 2009, 9: 869093.

3. Lanckriet G, Bie T, Cristianini N, Jordan M, Noble S: A statistical framework for genomic data fusion. Bioinformatics 2004, 20: 2626–2635. 10.1093/bioinformatics/bth294

4. Daemen A, Gevaert O, De Bie T, Debucquoy A, Machiels J, De Moor B, Haustermans K: Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer. Pac Symp Biocomputing 2008, 13: 166–177.

5. Buness A, Ruschhaupt M, Kuner R, Tresch A: Classification across gene expression microarrray studies. Bioinformatics 2009, 10: 453.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3