Bayesian Model Selection via Composite Likelihood for High‐dimensional Data Integration

Author:

Zhang Guanlin1,Wu Yuehua1,Gao Xin1ORCID

Affiliation:

1. York University Toronto Ontario Canada

Abstract

AbstractWe consider data integration problems where correlated data are collected from multiple platforms. Within each platform, there are linear relationships between the responses and a collection of predictors. We extend the linear models to include random errors coming from a much wider family of sub‐Gaussian and subexponential distributions. The goal is to select important predictors across multiple platforms, where the number of predictors and the number of observations both increase to infinity. We combine the marginal densities of the responses obtained from different platforms to form a composite likelihood and propose a model selection criterion based on Bayesian composite posterior probabilities. Under some regularity conditions, we prove that the model selection criterion is consistent to recover the union support of the predictors with divergent true model size.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3