BioWarehouse: a bioinformatics database warehouse toolkit

Author:

Lee Thomas J,Pouliot Yannick,Wagner Valerie,Gupta Priyanka,Stringer-Calvert David WJ,Tenenbaum Jessica D,Karp Peter D

Abstract

Abstract Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference44 articles.

1. Department of Energy. DOE white paper on bio-informatics1993. [http://www.gdb.org/Dan/DOE/whitepaper/contents.html]

2. Karp P: Proc 1994 meeting on the interconnection of molecular biology databases.1994. [http://www.ai.sri.com/pkarp/mimbd/94/mimbd-94.html]

3. Karp P: Proc 1995 meeting on the interconnection of molecular biology databases.1994. [http://www.ai.sri.com/pkarp/mimbd/95/abstracts.html]

4. Markowitz V: Heterogeneous molecular biology databases. Journal of Computational Biology 1995, 2(4):537–538.

5. Davidson SB, Overton C, Buneman P: Challenges in integrating biological data sources. Journal of Computational Biology 1995, 2(4):557–572.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3