Formalization and Semantic Integration of Heterogeneous Omics Annotations for Exploratory Searches

Author:

Irshad Omer1ORCID,Ghani Khan Muhammad Usman1ORCID

Affiliation:

1. Department of Computer Science & Engineering, Faculty of Electrical Engineering, The University of Engineering and Technology, Lahore, Pakistan

Abstract

Aim: To facilitate researchers and practitioners for unveiling the mysterious functional aspects of human cellular system through performing exploratory searching on semantically integrated heterogeneous and geographically dispersed omics annotations. Background: Improving health standards of life is one of the motives which continuously instigates researchers and practitioners to strive for uncovering the mysterious aspects of human cellular system. Inferring new knowledge from known facts always requires reasonably large amount of data in well-structured, integrated and unified form. Due to the advent of especially high throughput and sensor technologies, biological data is growing heterogeneously and geographically at astronomical rate. Several data integration systems have been deployed to cope with the issues of data heterogeneity and global dispersion. Systems based on semantic data integration models are more flexible and expandable than syntax-based ones but still lack aspect-based data integration, persistence and querying. Furthermore, these systems do not fully support to warehouse biological entities in the form of semantic associations as naturally possessed by the human cell. Objective: To develop aspect-oriented formal data integration model for semantically integrating heterogeneous and geographically dispersed omics annotations for providing exploratory querying on integrated data. Method: We propose an aspect-oriented formal data integration model which uses web semantics standards to formally specify its each construct. Proposed model supports aspect-oriented representation of biological entities while addressing the issues of data heterogeneity and global dispersion. It associates and warehouses biological entities in the way they relate with Result: To show the significance of proposed model, we developed a data warehouse and information retrieval system based on proposed model compliant multi-layered and multi-modular software architecture. Results show that our model supports well for gathering, associating, integrating, persisting and querying each entity with respect to its all possible aspects within or across the various associated omics layers. Conclusion: Formal specifications better facilitate for addressing data integration issues by providing formal means for understanding omics data based on meaning instead of syntax

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3