Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data

Author:

Sakellariou Argiris,Sanoudou Despina,Spyrou George

Abstract

Abstract Background A feature selection method in microarray gene expression data should be independent of platform, disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there should be clusters of genes that share similar biological functions related to the investigated disease. Thus, instead of keeping N top ranked genes, it would be more appropriate to define and keep a number of gene cluster exemplars. Results We propose a hybrid FS method (mAP-KL), which combines multiple hypothesis testing and affinity propagation (AP)-clustering algorithm along with the Krzanowski & Lai cluster quality index, to select a small yet informative subset of genes. We applied mAP-KL on real microarray data, as well as on simulated data, and compared its performance against 13 other feature selection approaches. Across a variety of diseases and number of samples, mAP-KL presents competitive classification results, particularly in neuromuscular diseases, where its overall AUC score was 0.91. Furthermore, mAP-KL generates concise yet biologically relevant and informative N-gene expression signatures, which can serve as a valuable tool for diagnostic and prognostic purposes, as well as a source of potential disease biomarkers in a broad range of diseases. Conclusions mAP-KL is a data-driven and classifier-independent hybrid feature selection method, which applies to any disease classification problem based on microarray data, regardless of the available samples. Combining multiple hypothesis testing and AP leads to subsets of genes, which classify unknown samples from both, small and large patient cohorts with high accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3