Applications of Bayesian shrinkage prior models in clinical research with categorical responses

Author:

Bhattacharyya Arinjita,Pal Subhadip,Mitra Riten,Rai Shesh

Abstract

Abstract Background Prediction and classification algorithms are commonly used in clinical research for identifying patients susceptible to clinical conditions such as diabetes, colon cancer, and Alzheimer’s disease. Developing accurate prediction and classification methods benefits personalized medicine. Building an excellent predictive model involves selecting the features that are most significantly associated with the outcome. These features can include several biological and demographic characteristics, such as genomic biomarkers and health history. Such variable selection becomes challenging when the number of potential predictors is large. Bayesian shrinkage models have emerged as popular and flexible methods of variable selection in regression settings. This work discusses variable selection with three shrinkage priors and illustrates its application to clinical data such as Pima Indians Diabetes, Colon cancer, ADNI, and OASIS Alzheimer’s real-world data. Methods A unified Bayesian hierarchical framework that implements and compares shrinkage priors in binary and multinomial logistic regression models is presented. The key feature is the representation of the likelihood by a Polya-Gamma data augmentation, which admits a natural integration with a family of shrinkage priors, specifically focusing on Horseshoe, Dirichlet Laplace, and Double Pareto priors. Extensive simulation studies are conducted to assess the performances under different data dimensions and parameter settings. Measures of accuracy, AUC, brier score, L1 error, cross-entropy, and ROC surface plots are used as evaluation criteria comparing the priors with frequentist methods as Lasso, Elastic-Net, and Ridge regression. Results All three priors can be used for robust prediction on significant metrics, irrespective of their categorical response model choices. Simulation studies could achieve the mean prediction accuracy of 91.6% (95% CI: 88.5, 94.7) and 76.5% (95% CI: 69.3, 83.8) for logistic regression and multinomial logistic models, respectively. The model can identify significant variables for disease risk prediction and is computationally efficient. Conclusions The models are robust enough to conduct both variable selection and prediction because of their high shrinkage properties and applicability to a broad range of classification problems.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3