Data preparation and interannotator agreement: BioCreAtIvE Task 1B

Author:

Colosimo Marc E,Morgan Alexander A,Yeh Alexander S,Colombe Jeffrey B,Hirschman Lynette

Abstract

Abstract Background We prepared and evaluated training and test materials for an assessment of text mining methods in molecular biology. The goal of the assessment was to evaluate the ability of automated systems to generate a list of unique gene identifiers from PubMed abstracts for the three model organisms Fly, Mouse, and Yeast. This paper describes the preparation and evaluation of answer keys for training and testing. These consisted of lists of normalized gene names found in the abstracts, generated by adapting the gene list for the full journal articles found in the model organism databases. For the training dataset, the gene list was pruned automatically to remove gene names not found in the abstract; for the testing dataset, it was further refined by manual annotation by annotators provided with guidelines. A critical step in interpreting the results of an assessment is to evaluate the quality of the data preparation. We did this by careful assessment of interannotator agreement and the use of answer pooling of participant results to improve the quality of the final testing dataset. Results Interannotator analysis on a small dataset showed that our gene lists for Fly and Yeast were good (87% and 91% three-way agreement) but the Mouse gene list had many conflicts (mostly omissions), which resulted in errors (69% interannotator agreement). By comparing and pooling answers from the participant systems, we were able to add an additional check on the test data; this allowed us to find additional errors, especially in Mouse. This led to 1% change in the Yeast and Fly "gold standard" answer keys, but to an 8% change in the mouse answer key. Conclusion We found that clear annotation guidelines are important, along with careful interannotator experiments, to validate the generated gene lists. Also, abstracts alone are a poor resource for identifying genes in paper, containing only a fraction of genes mentioned in the full text (25% for Fly, 36% for Mouse). We found that there are intrinsic differences between the model organism databases related to the number of synonymous terms and also to curation criteria. Finally, we found that answer pooling was much faster and allowed us to identify more conflicting genes than interannotator analysis.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3