A dictionary‐based approach to normalizing gene names in one domain of knowledge from the biomedical literature

Author:

Galvez Carmen,de Moya‐Anegón Félix

Abstract

PurposeGene term variation is a shortcoming in text‐mining applications based on biomedical literature‐based knowledge discovery. The purpose of this paper is to propose a technique for normalizing gene names in biomedical literature.Design/methodology/approachUnder this proposal, the normalized forms can be characterized as a unique gene symbol, defined as the official symbol or normalized name. The unification method involves five stages: collection of the gene term, using the resources provided by the Entrez Gene database; encoding of gene‐naming terms in a table or binary matrix; design of a parametrized finite‐state graph (P‐FSG); automatic generation of a dictionary; and matching based on dictionary look‐up to transform the gene mentions into the corresponding unified form.FindingsThe findings show that the approach yields a high percentage of recall. Precision is only moderately high, basically due to ambiguity problems between gene‐naming terms and words and abbreviations in general English.Research limitations/implicationsThe major limitation of this study is that biomedical abstracts were analyzed instead of full‐text documents. The number of under‐normalization and over‐normalization errors is reduced considerably by limiting the realm of application to biomedical abstracts in a well‐defined domain.Practical implicationsThe system can be used for practical tasks in biomedical literature mining. Normalized gene terms can be used as input to literature‐based gene clustering algorithms, for identifying hidden gene‐to‐disease, gene‐to‐gene and gene‐to‐literature relationships.Originality/valueFew systems for gene term variation handling have been developed to date. The technique described performs gene name normalization by dictionary look‐up.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3