Can Bibliographic Pointers for Known Biological Data Be Found Automatically? Protein Interactions as a Case Study

Author:

Blaschke Christian1,Valencia Alfonso1

Affiliation:

1. Protein Design Group, National Centre for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain

Abstract

The Dictionary of Interacting Proteins(DIP) (Xenarioset al., 2000) is a large repository of protein interactions: its March 2000 release included 2379 protein pairs whose interactions have been detected by experimental methods. Even if many of these correspond to poorly characterized proteins, the result of massive yeast two-hybrid screenings, as many as 851 correspond to interactions detected using direct biochemical methods.We used information retrieval technology to search automatically for sentences in Medline abstracts that support these 851 DIP interactions. Surprisingly, we found correspondence between DIP protein pairs and Medline sentences describing their interactions in only 30% of the cases. This low coverage has interesting consequences regarding the quality of annotations (references) introduced in the database and the limitations of the application of information extraction (IE) technology to Molecular Biology. It is clear that the limitation of analyzing abstracts rather than full papers and the lack of standard protein names are difficulties of considerably more importance than the limitations of the IE methodology employed. A positive finding is the capacity of the IE system to identify new relations between proteins, even in a set of proteins previously characterized by human experts. These identifications are made with a considerable degree of precision.This is, to our knowledge, the first large scale assessment of IE capacity to detect previously known interactions: we thus propose the use of the DIP data set as a biological reference to benchmark IE systems.

Publisher

Hindawi Limited

Subject

Genetics,Molecular Biology,Biotechnology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3