permGPU: Using graphics processing units in RNA microarray association studies

Author:

Shterev Ivo D,Jung Sin-Ho,George Stephen L,Owzar Kouros

Abstract

Abstract Background Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. Results We have developed a CUDA based implementation, , that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. Conclusions is available as an open-source stand-alone application and as an extension package for the statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference25 articles.

1. Foster I: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley; 1995.

2. The Message Passing Interface (MPI) standard[http://www.mcs.anl.gov/research/projects/mpi/]

3. The OpenMP API specification for parallel programming[http://openmp.org/wp/]

4. Hussong R, Gregorius B, Tholey A, Hildebrandt A: Highly accelerated feature detection in proteomics data sets using modern graphics processing units. Bioinformatics 2009, 25: 1937–1943. 10.1093/bioinformatics/btp294

5. Sinnott-Armstrong NA, Greene CS, Cancare F, Moore JH: Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Bioinformatics 2009., 2:

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Batched ranged random integer generation;Software: Practice and Experience;2024-08-25

2. Fast Random Integer Generation in an Interval;ACM Transactions on Modeling and Computer Simulation;2019-01-31

3. Membrane computing inspired feature selection model for microarray cancer data;Intelligent Data Analysis;2017-04-01

4. SparkScore: Leveraging Apache Spark for Distributed Genomic Inference;2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2016-05

5. Valid Monte Carlo Permutation Tests for Genetic Case-Control Studies With Missing Genotypes;Genetic Epidemiology;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3