Modelling count, bounded and skewed continuous outcomes in physical activity research: beyond linear regression models

Author:

Akram MuhammadORCID,Cerin EsterORCID,Lamb Karen E.ORCID,White Simon R.ORCID

Abstract

Abstract Background Inference using standard linear regression models (LMs) relies on assumptions that are rarely satisfied in practice. Substantial departures, if not addressed, have serious impacts on any inference and conclusions; potentially rendering them invalid and misleading. Count, bounded and skewed outcomes, common in physical activity research, can substantially violate LM assumptions. A common approach to handle these is to transform the outcome and apply a LM. However, a transformation may not suffice. Methods In this paper, we introduce the generalized linear model (GLM), a generalization of the LM, as an approach for the appropriate modelling of count and non-normally distributed (i.e., bounded and skewed) outcomes. Using data from a study of physical activity among older adults, we demonstrate appropriate methods to analyse count, bounded and skewed outcomes. Results We show how fitting an LM when inappropriate, especially for the type of outcomes commonly encountered in physical activity research, substantially impacts the analysis, inference, and conclusions compared to a GLM. Conclusions GLMs which more appropriately model non-normally distributed response variables should be considered as more suitable approaches for managing count, bounded and skewed outcomes rather than simply relying on transformations. We recommend that physical activity researchers add the GLM to their statistical toolboxes and become aware of situations when GLMs are a better method than traditional approaches for modeling count, bounded and skewed outcomes.

Funder

Health Medical Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Physical Therapy, Sports Therapy and Rehabilitation,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3