Author:
Leite Daniel J.,Schönauer Anna,Blakeley Grace,Harper Amber,Garcia-Castro Helena,Baudouin-Gonzalez Luis,Wang Ruixun,Sarkis Naïra,Nikola Alexander Günther,Koka Venkata Sai Poojitha,Kenny Nathan J.,Turetzek Natascha,Pechmann Matthias,Solana Jordi,McGregor Alistair P.
Abstract
AbstractSpiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Funder
Nigel Groome Studentship
BBSRC DTP
Deutsche Forschungsgemeinschaft
Rutherford Discovery Fellowship
Biotechnology and Biological Sciences Research Council
Medical Research Council
Leverhulme Trust
Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Reference124 articles.
1. Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity: molecular genetics and the evolution of animal design. Malden: Blackwell Science; 2001.
2. Schwager EE, Schöenauer A, Leite DJ, Sharma PP, McGregor AP. Chelicerata. In: Wanninger A, editor. Evolutionary Developmental Biology of Invertebrates 3: Ecdysozoa I: Non-Tetraconata. Heidelberg: Springer-Verlag; 2015.
3. Oda H, Akiyama-Oda Y. The common house spider Parasteatoda tepidariorum. EvoDevo. 2020;11:6.
4. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG. Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. BioEssays. 2008;30(5):487–98.
5. Hilbrant M, Damen WG, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development. 2012;139(15):2655–62.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献