The Regulatory Logic of Planarian Stem Cell Differentiation

Author:

Pérez-Posada AlbertoORCID,García-Castro HelenaORCID,Emili ElenaORCID,Vanni VirginiaORCID,Arias-Baldrich CireniaORCID,Frölich SiebrenORCID,van Heeringen Simon J.ORCID,Kenny NathanORCID,Solana JordiORCID

Abstract

AbstractCell type identity is determined by gene regulatory networks (GRNs), comprising the expression of specific transcription factors (TFs) regulating target genes (TGs) via binding to open chromatin regions (OCRs). The regulatory logic of differentiation includes factors specific to one or multiple cell types, functioning in a combinatorial fashion. Classic approaches of GRN discovery used perturbational data to elucidate TF-TG links, but are laborious and not scalable across the tree of life. Single cell transcriptomics has emerged as a revolutionary approach to study gene expression with cell type resolution, but incorporating perturbational data is challenging. Planarians, with their pluripotent neoblast stem cells continuously giving rise to all cell types, offer an ideal model to attempt this integration. Despite extensive single cell transcriptomic studies, the transcriptional and chromatin regulation at the cell type level remains unexplored. Here, we investigate the regulatory logic of planarian stem cell differentiation by obtaining an organism-level integration of single cell transcriptomics and single cell accessibility data. We identify specific open chromatin profiles for major differentiated cell types and analyse their transcriptomic landscape, revealing distinct gene modules expressed in individual types and combinations of them. Integrated analysis unveils gene networks reflecting known TF interactions in each type and identifies TFs potentially driving differentiation across multiple cell types. To validate our predictions, we combined TF knockdown RNAi experiments with single cell transcriptomics. We focus onhnf4, a TF known to be expressed in gut phagocytes, and confirm its influence on other types, including parenchymal cells. Our results demonstrate high overlap between predicted targets and experimentally-validated differentially-regulated genes. Overall, our study integrates TFs, TGs and OCRs to reveal the regulatory logic of planarian stem cell differentiation, showcasing that the combination of single cell methods and perturbational studies will be key for characterising GRNs widely.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3