Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography

Author:

Röhrich Sebastian,Schlegl Thomas,Bardach Constanze,Prosch Helmut,Langs Georg

Abstract

Abstract Background Automatically detecting and quantifying pneumothorax on chest computed tomography (CT) may impact clinical decision-making. Machine learning methods published so far struggle with the heterogeneity of technical parameters and the presence of additional pathologies, highlighting the importance of stable algorithms. Methods A deep residual UNet was developed and evaluated for automated, volume-level pneumothorax grading (i.e., labelling a volume whether a pneumothorax was present or not), and pixel-level classification (i.e., segmentation and quantification of pneumothorax), on a retrospective series of routine chest CT data. Ground truth annotations were provided by radiologists. The fully automated pixel-level pneumothorax segmentation method was trained using 43 chest CT scans and evaluated on 9 chest CT scans with pixel-level annotation basis and 567 chest CT scans on a volume-level basis. Results This method achieved a receiver operating characteristic area under the curve (AUC) of 0.98, an average precision of 0.97, and a Dice similarity coefficient (DSC) of 0.94. This segmentation performance resulted to be similar to the inter-rater segmentation accuracy of two radiologists, who achieved a DSC of 0.92. The comparison of manual and automated pneumothorax quantification yielded a Pearson correlation coefficient of 0.996. The volume-level pneumothorax grading accuracy was evaluated on 567 chest CT scans and yielded an AUC of 0.98 and an average precision of 0.95. Conclusions We proposed a deep learning method for the detection and quantification of pneumothorax in heterogeneous routine clinical data that may facilitate the automated triage of urgent examinations and enable treatment decision support.

Funder

Siemens Healthineers

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3