DAWTran: dynamic adaptive windowing transformer network for pneumothorax segmentation with implicit feature alignment

Author:

Liang PengchenORCID,Chen Jianguo,Yao Lei,Yu Yanfang,Liang Kaiyi,Chang Qing

Abstract

Abstract Objective. This study aims to address the significant challenges posed by pneumothorax segmentation in computed tomography images due to the resemblance between pneumothorax regions and gas-containing structures such as the trachea and bronchus. Approach. We introduce a novel dynamic adaptive windowing transformer (DAWTran) network incorporating implicit feature alignment for precise pneumothorax segmentation. The DAWTran network consists of an encoder module, which employs a DAWTran, and a decoder module. We have proposed a unique dynamic adaptive windowing strategy that enables multi-head self-attention to effectively capture multi-scale information. The decoder module incorporates an implicit feature alignment function to minimize information deviation. Moreover, we utilize a hybrid loss function to address the imbalance between positive and negative samples. Main results. Our experimental results demonstrate that the DAWTran network significantly improves the segmentation performance. Specifically, it achieves a higher dice similarity coefficient (DSC) of 91.35% (a larger DSC value implies better performance), showing an increase of 2.21% compared to the TransUNet method. Meanwhile, it significantly reduces the Hausdorff distance (HD) to 8.06 mm (a smaller HD value implies better performance), reflecting a reduction of 29.92% in comparison to the TransUNet method. Incorporating the dynamic adaptive windowing (DAW) mechanism has proven to enhance DAWTran’s performance, leading to a 4.53% increase in DSC and a 15.85% reduction in HD as compared to SwinUnet. The application of the implicit feature alignment (IFA) further improves the segmentation accuracy, increasing the DSC by an additional 0.11% and reducing the HD by another 10.01% compared to the model only employing DAW. Significance. These results highlight the potential of the DAWTran network for accurate pneumothorax segmentation in clinical applications, suggesting that it could be an invaluable tool in improving the precision and effectiveness of diagnosis and treatment in related healthcare scenarios. The improved segmentation performance with the inclusion of DAW and IFA validates the effectiveness of our proposed model and its components.

Funder

Shanghai University of Traditional Chinese Medicine

Shanghai Municipal Health Commission

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference55 articles.

1. Bpat-unet: boundary preserving assembled transformer unet for ultrasound thyroid nodule segmentation;Bi;Comput. Methods Programs Biomed.,2023

2. D-trattunet: dual-decoder transformer-based attention unet architecture for binary and multi-classes covid-19 infection segmentation;Bougourzi,2023

3. Mdct for automated detection and measurement of pneumothoraces in trauma patients;Cai;Am. J. Roentgenol.,2009

4. Swin-unet: Unet-like pure transformer for medical image segmentation;Cao,2022

5. Transclaw u-net: claw u-net with transformers for medical image segmentation;Chang,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3