Tantalum-specific contrast-to-noise ratio or conventional detector dose-driven exposure control in angiography: radiation dose and image quality evaluation in a porcine model

Author:

Werncke ThomasORCID,Meine Timo Christian,Hinrichs Jan B.,Maschke Sabine K.,Becker Lena Sophie,Brüsch Inga,Rumpel Regina,Wacker Frank K.,Meyer Bernhard C.

Abstract

Abstract Background The aim of this animal study was to compare the fluoroscopic image quality (IQ) and radiation dose between a tantalum (Ta)-specific contrast-to-noise ratio-driven exposure control (Ta-CEC) and a detector dose-driven exposure control (DEC) in abdominal angiography. Methods Nine angiography scenarios were created in seven anaesthetised pigs using Ta-based embolisation material during percutaneous liver and kidney intervention. Fluoroscopic images were acquired using three DEC protocols with different dose levels and Ta-CEC protocols with different IQ levels, sampled in small steps. Polymethyl-methacrylate and aluminium plates were used to simulate attenuation of three water equivalent thicknesses (WET). Three blinded readers evaluated the IQ of DEC and dose equivalent Ta images and selected the Ta-IQ equivalent image corresponding to the DEC image. Results Interobserver agreement for the IQ assessment was 0.43 for DEC, 0.56 for Ta-CEC and for the assessment of incident air kerma at the interventional reference point (Ka,r) for the Ta-IQ equivalent image 0.73. The average IQ of the dose equivalent Ta images was superior compared to the DEC images (p < 0.001) and also for every WET (26, 31, or 36 cm) and dose level (p ≤ 0.022). The average Ka,r for the Ta-IQ equivalent images was 59 ± 16% (mean ± standard deviation) lower compared to the DEC images (p < 0.001). Conclusions Compared to DEC, Ta-CEC significantly improved the fluoroscopic depiction of Ta, while maintaining the Ka,r. Alternatively, the Ka,r can be significantly reduced by using Ta-CEC instead of DEC, while maintaining equivalent IQ.

Funder

Siemens Healthineers

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3