Initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin

Author:

da Silva Santin Matheus,Koehler José,Rocha Danilo Massuia,dos Reis Camila Audrey,Omar Nadia Fayez,Fidler Yasmin,de Miranda Soares Maria Albertina,Gomes José Rosa

Abstract

Abstract Background Calvaria skin has a reduced thickness, and its initial damage produced by irradiation was scarcely reported. We aimed to identify the initial effects of x-ray irradiation in the rat calvaria skin. Methods After approval by the Animal Ethical Committee, calvaria skin sections of five Wistar rats per time point were evaluated on days 4, 9, 14, and 25 following a single 15-Gy x-ray irradiation of the head. The control group was composed of five rats and evaluated on day 4. Sections were assessed using hematoxylin-eosin and Masson’s trichrome staining for morphology, inflammation, and fibrosis. Fibrosis was also evaluated by the collagen maturation index from Picrosirius red staining and by cell proliferation using the immunohistochemistry, after 5-bromo-2-deoxyuridine intraperitoneal injection. Results In irradiated rats, we observed a reduction in epithelial cell proliferation (p = 0.004) and in matrix metalloproteinase-9 expression (p < 0.001), an increase in the maturation index, and with a predominance in the type I collagen fibers, on days 9 and 14 (1.19 and 1.17, respectively). A progressive disorganization in the morphology of the collagen fibers at all time points and changes in morphology of the sebaceous gland cells and hair follicle were present until day 14. Conclusions The initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin was a change in the normal morphology of collagen fibers to an amorphous aspect, a temporary absence of the sebaceous gland and hair follicles, and without a visible inflammatory process, cell proliferation, or fibrosis process in the dermis.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Araucária

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3