Radiological injuries under low energy x-rays in mice depending on dose and protocol: comparative characterization of lesion severity and impact of the in vivo bone response on retrospective dose estimations

Author:

Guillou Manon,L’Homme Bruno,Trompier François,Errabii Anass,Marcoux Tifanie,Gruel Gaëtan,Prezado Yolanda,Dos Santos Morgane

Abstract

Abstract Objective. To improve our knowledge about the biological effects of over exposures involving low-energy x-rays, we developed and characterized a preclinical mouse model allowing to mimic different lesion severity degrees induced by 80 kV x-ray depending on the dose and protocol (single or repeated exposure). Approach. Mice were locally exposed (paw) to 80 kV x-rays in a single (15, 30 or 45 Gy in K air) or repeated exposition (2 × 15 or 3 × 15 Gy in K air) to assess different degrees of lesion severity. Six post-irradiation euthanasia time points (0, 7, 14, 21, 42, and 84 days) were determined to follow up the evolution of lesions based on the lesion score, weighing and cutaneous blood perfusion. The bone dose was estimated at the different time points by electron paramagnetic resonance (EPR) spectroscopy. Main results. The monitoring of the lesion severity allows to classify the exposure protocols according to their severity. EPR spectroscopy measurements allow to determine the bone dose on the day of irradiation which is 7 times higher than the initial dose for single protocols. However, the initial signal measured at the end of the repeated exposure was 27% lower than the signal measured for a single dose. The study of the kinetics of EPR signal showed a decrease of the EPR signal which is dependent on the exposure protocol but not on dose highlighting the impact of bone physiology on the bone dose estimation. Significance: the preclinical model developed allows to assess the impact of the dose and protocol on the lesion severity induced by low-energy x-ray. For the first time, the dynamics of free radicals have been quantified in an in vivo model, highlighting that the doses actually administered can be underestimated if samples are taken weeks or even months after exposure.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3