Biomass-fuelled improved cookstove intervention to prevent household air pollution in Northwest Ethiopia: a cluster randomized controlled trial

Author:

Adane Mesafint MollaORCID,Alene Getu Degu,Mereta Seid Tiku

Abstract

Abstract Background Household air pollution from biomass fuels burning in traditional cookstoves currently appeared as one of the most serious threats to public health with a recent burden estimate of 2.6 million premature deaths every year worldwide, ranking highest among environmental risk factors and one of the major risk factors of any type globally. Improved cookstove interventions have been widely practiced as potential solutions. However, studies on the effect of improved cookstove interventions are limited and heterogeneous which suggested the need for further research. Methods A cluster randomized controlled trial study was conducted to assess the effect of biomass-fuelled improved cookstove intervention on the concentration of household air pollution compared with the continuation of an open burning traditional cookstove. A total of 36 clusters were randomly allocated to both arms at a 1:1 ratio, and improved cookstove intervention was delivered to all households allocated into the treatment arm. All households in the included clusters were biomass fuel users and relatively homogenous in terms of basic socio-demographic and cooking-related characteristics. Household air pollution was determined by measuring the concentration of indoor fine particulate, and the effect of the intervention was estimated using the Generalized Estimating Equation. Results A total of 2031 household was enrolled in the study across 36 randomly selected clusters in both arms, among which data were obtained from a total of 1977 households for at least one follow-up visit which establishes the intention-to-treat population dataset for analysis. The improved cookstove intervention significantly reduces the concentration of household air pollution by about 343 μg/m3 (Ḃ = − 343, 95% CI − 350, − 336) compared to the traditional cookstove method. The overall reduction was found to be about 46% from the baseline value of 859 (95% CI 837–881) to 465 (95% CI 458–472) in the intervention arm compared to only about 5% reduction from 850 (95% CI 828–872) to 805 (95% CI 794–817) in the control arm. Conclusions The biomass-fuelled improved cookstove intervention significantly reduces the concentration of household air pollution compared to the traditional method. This suggests that the implementation of these cookstove technologies may be necessary to achieve household air pollution exposure reductions. Trial registration The trial project was retrospectively registered on August 2, 2018, at the clinical trials.gov registry database (https://clinicaltrials.gov/) with the NCT03612362 registration identifier number.

Funder

Bahir Dar University

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3