Author:
Lüleci Hatice Büşra,Yılmaz Alper
Abstract
Abstract
Objectives
In this study, we aimed to identify tissue-specific genes for various human tissues/organs more robustly and rigorously by extending the tau score algorithm.
Introduction
Tissue-specific genes are a class of genes whose functions and expressions are preferred in one or several tissues restrictedly. Identification of tissue-specific genes is essential for discovering multi-cellular biological processes such as tissue-specific molecular regulations, tissue development, physiology, and the pathogenesis of tissue-associated diseases.
Materials and Methods
Gene expression data derived from five large RNA sequencing (RNA-seq) projects, spanning 96 different human tissues, were retrieved from ArrayExpress and ExpressionAtlas. The first step is categorizing genes using significant filters and tau score as a specificity index. After calculating tau for each gene in all datasets separately, statistical distance from the maximum expression level was estimated using a new meaningful procedure. Specific expression of a gene in one or several tissues was calculated after the integration of tau and statistical distance estimation, which is called as extended tau approach. Obtained tissue-specific genes for 96 different human tissues were functionally annotated, and some comparisons were carried out to show the effectiveness of the extended tau method.
Results and Discussion
Categorization of genes based on expression level and identification of tissue-specific genes for a large number of tissues/organs were executed. Genes were successfully assigned to multiple tissues by generating the extended tau approach as opposed to the original tau score, which can assign tissue specificity to single tissue only.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献