TransTEx: novel tissue-specificity scoring method for grouping human transcriptome into different expression groups

Author:

Surana Pallavi1ORCID,Dutta Pratik1,Davuluri Ramana V1ORCID

Affiliation:

1. Department of Biomedical Informatics, Stony Brook University , Stony Brook, NY 11794, USA

Abstract

Abstract Motivation Although human tissues carry out common molecular processes, gene expression patterns can distinguish different tissues. Traditional informatics methods, primarily at the gene level, overlook the complexity of alternative transcript variants and protein isoforms produced by most genes, changes in which are linked to disease prognosis and drug resistance. Results We developed TransTEx (Transcript-level Tissue Expression), a novel tissue-specificity scoring method, for grouping transcripts into four expression groups. TransTEx applies sequential cut-offs to tissue-wise transcript probability estimates, subsampling-based P-values and fold-change estimates. Application of TransTEx on GTEx mRNA-seq data divided 199 166 human transcripts into different groups as 17 999 tissue-specific (TSp), 7436 tissue-enhanced, 36 783 widely expressed (Wide), 79 191 lowly expressed (Low), and 57 757 no expression (Null) transcripts. Testis has the most (13 466) TSp isoforms followed by liver (890), brain (701), pituitary (435), and muscle (420). We found that the tissue specificity of alternative transcripts of a gene is predominantly influenced by alternate promoter usage. By overlapping brain-specific transcripts with the cell-type gene-markers in scBrainMap database, we found that 63% of the brain-specific transcripts were enriched in nonneuronal cell types, predominantly astrocytes followed by endothelial cells and oligodendrocytes. In addition, we found 61 brain cell-type marker genes encoding a total of 176 alternative transcripts as brain-specific and 22 alternative transcripts as testis-specific, highlighting the complex TSp and cell-type specific gene regulation and expression at isoform-level. TransTEx can be adopted to the analysis of bulk RNA-seq or scRNA-seq datasets to find tissue- and/or cell-type specific isoform-level gene markers. Availability and implementation TransTEx database: https://bmi.cewit.stonybrook.edu/transtexdb/ and the R package is available via GitHub: https://github.com/pallavisurana1/TransTEx.

Funder

National Library of Medicine/National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3