Prediction and experimental confirmation of banana bract mosaic virus encoding miRNAs and their targets

Author:

Sankaranarayanan RamamoorthyORCID,Palani Sankara NaynarORCID,Kumar AbhishekORCID,Selvakumar A. S. PunithaORCID,Tennyson JebasinghORCID

Abstract

Abstract Background Potyviridae is the largest plant infecting family under the monophyletic group Riboviria, infects many of the food, fodder and ornamental crops. Due to the higher mutation and recombination rate, potyvirids are evolving rapidly, adapting to the environmental chaos and expanding their hosts. Virus control measures are need to be updated as the economic importance of potyvirids is massive. microRNAs (miRNAs) are well known for their functional importance in eukaryotes and many viruses. Regardless of its biogenesis, whether canonical or noncanonical, microRNA centric antivirus approaches attract the researchers to the hopeful future of next-generation broad-spectrum antiviral measures. Methods In this study, we predicted and screened banana bract mosaic virus (BBrMV) encoding miRNAs by computation approaches and their targets on banana transcriptome using plant small RNA target analysis server (psRNAtarget). The target gene functions were annotated by Blast2GO. The predicted BBrMV miRNAs were experimentally screened by stem-loop RT-PCR. Results The results showed that, among the predicted BBrMV miRNAs, miRNA2 is conserved throughout BBrMV isolates and has multiple virus-specific target transcripts. In addition, primary experimental validation for the predicted miRNAs revealed that miRNA2 exists in the BBrMV infected banana leaf samples. Conclusions The existence of BBrMV miRNA2 is confirmed by stem-loop RT-PCR followed by cloning and sequencing. The presence of miRNA of Potyviridae is rarely addressed and would definitely spread the hope to understand the virus infectious cycle. Our report would also help to better understand and manipulate potyviral infections.

Funder

Council of Scientific and Industrial Research, India

Publisher

AME Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3