Isolation and characterization of three bacteriophages infecting Erwinia amylovora and their potential as biological control agent

Author:

Hassan Wessam,Ahmed Osman,Hassan Rasha E.,Youssef Sahar A.,Shalaby A. A.

Abstract

Abstract Background Fire Blight, incited by Erwinia amylovora, is one of the most damaging pear and apple diseases in the world. Fire blight was introduced to Egypt in the 1960 and threatens the Egypt’s costs for pear industry. Currently, Phage therapy is considered to be secured biological method for controlling plant bacterial diseases. This investigation aimed to isolate and identify molecularly for bacteria causing fire bright disease. As well as isolation and identification bacteriophages via spot and plaque assay techniques from pear fire blight lesions and soil. On the other hand, bacteriophages were identified based on plaque morphology, virion morphology, physical characters, profile of DNA restriction and protein. Results Pathogenicity test revealed that healthy seedlings and pear fruits were responsive to fire blight E. amylovora. Considering the relatively wide host range and greatest protein and genetic variability, using restriction enzyme pattern, the three diversity phage isolates named, EAP1, EAP2 and EAP3 showed a lack of diversity out of five were fatherly characterized. The phages confirmed the close relation of EAP1, EAP2 to Siphoviridae (hexagonal head and long flexible non-contractile tail) and EAP3 to Myoviridae (icosahedral head and contractile tail). The phages retained higher lytic competence of 90.4; 92.68 and 95.25% for EAP1, EAP2 and EAP3, respectively. The phages were stable at strong alkaline (pH 10) 2% salt solution conditions and UV spectra. While EAP3 phage revealed the hexagonal head and very short tail that belongs to Myoviridae family. Bacteriophages were characterized by digestion of the phage DNA with three restriction endonucleases and were placed into three groups based on the patterns. Bacteriophages were 9 used for reducing bacterial infection populations and severity on pear. In a bioassay, the biocontrol of E. amylovora was evaluated using disks of immature pear fruit. On the pear disk surface, bacterial exudate was considerably suppressed by all phage isolates. According to measurements of the bacterial population still present on the disk surface, phage therapy could reduce it by up to 97%. Bacteriophages reduced pear fire blight disease severity on pear fruit trails. Conclusion The results indicated that bacteriophage isolates may demonstrate variable reactivity against E. amylovora. Bacteriophages reduced pear fire blight disease severity on pear fruit trials. The results indicated that bacteriophage isolates may demonstrate variable reactivity against E. amylovora.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3