Author:
Lal Mehi,Kumar Ashvani,Chaudhary Sorabh,Singh R. K.,Sharma Sanjeev,Kumar Manoj
Abstract
Abstract
Background
Soil and tuber-borne diseases are serious threat for potato cultivation worldwide which causes severe economical losses in terms of yield, quantity and quality. Generally, these diseases managed by chemical pesticide, are a major concern for human health and environment. Therefore, finding an eco-friendly alternative management strategies are necessary. The native bacterial isolates collected from different crops rhizosphere soil were evaluated against Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Fusarium spp and were also tested for their growth enhancement attributes on potato crop and phosphate solubilising efficiency.
Results
Based on the morphological and phenotypic characters, most of the isolates were identified as Pseudomonas spp (18 isolates). A total of twenty-two bacterial isolates were screened for bio-control activity in dual culture assay. Isolate Pf14 showed the highest mycelial inhibitory potential (ranged from 62.2 to 59.3%) against R. solani, S. sclerotiorum, S. rolfsii and Fusarium spp. In sealed plate assay, Pf14 produced antifungal volatile compounds that significantly inhibited mycelial growth (ranged from > 80 to > 50%). Maximum reduction in fungal biomass (ranged from > 80%) was observed in King’s broth in shake liquid culture in all the pathogens. Cell-free culture filtrate of the selected isolate inhibited mycelial growth ranged from 68.9 to 42.6% of the tested pathogens with 48-h old culture filtrate. Additionally, the isolates exhibited higher phosphorus solubilizing efficiency on PVK media. Under field conditions, talc based formulation of Pf14 showed enhanced agronomical characters and inhibits black scurf severity up to 67.59%. This treatment also recorded a highest tuber yield (21.90 t/ha) with increase of 15.38% in comparison to untreated control.
Conclusion
Overall, antagonistic bacterium Pf14 can be recommended as bio fertilizers for eco-friendly management of major potato fungal diseases as well as increasing marketable yield and used as an alternative to the pesticides and chemical fertilizers.
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Plant Science,Agronomy and Crop Science,Ecology
Reference41 articles.
1. Apaliya MT, Zhang HY, Zheng XF, Yang QY, Mahunu GK, Kwaw E (2017) Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. J Sci Food Agric 98:4665–4672
2. Bakker PAHM, Pieterse CMJ, LoonLC V (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243
3. Bautista G, Mendoza H, Uribe D (2007) Biocontrol of Rhizoctonia solani in native potato (Solanum phureja) plants using native Pseudomonas fluorescens. Acta Biol Colomb 12:19–32
4. Bertrand H, Nalin R, Bally R, Marel JCC (2001) Isolation and identification of the most efficient plant growth promoting bacteria associated with canola. Biol Fert Soil 33:152–156
5. Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Modrie P, Legrève A, Mahillon J, Bragard C (2018) Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9:143
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献