Author:
Atalla Sherien M. M.,Abdel-Kader Mokhtar M.,El-Gamal Nadia G.,El-Mougy Nehal S.
Abstract
AbstractMaize (Zea mays L.) is one of the most economic crops in Egypt. Production of amylase from the waste of maize is the most economic and cheap renewable and most abundant raw materials present in environment. Biosynthesis of Cu-chitosan nanoparticles for amylase production by co-culturing between Trichoderma harzianum and Pseudomonas fluorescens at different ratios compared to free conditions was the main purpose of this study. The optimum ratio 8:2, recorded between P. fluorescens: T. harzianum, was the most promising for production of amylase produce 22.47 and 28.60 U/ml for free and nano, respectively. The UV visible spectral analysis Cu-chitosan NPs was 220 nm, while the mean diameter, using transmission electron microscopy was 0.5 μm. Application of fermented maize wastes by co-cultivation of P. fluorescence and T. harzianum, as a grain dressing before sowing declared the reduction in both root and foliar diseases during the maize growing season, starting from germination up to 70 days of its vegetative growth under field conditions. A promising approach is the creation and use of environmentally safe products, whose protective effect is based on the induction of hydrolase inhibitors in plants.
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Plant Science,Agronomy and Crop Science,Ecology
Reference47 articles.
1. Ahmed AS, Abdella AAM, El-Sherbiny MG, Ibrahim MA, El Shamy RA, Atalla MMS (2019) Application of one–factor-at-a-time and statistical designs to enhance α-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocat Agr Biotech 22:101997. https://doi.org/10.1016/j.bcab.2019.101397
2. Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 1:1–29
3. Brunel S, Fernández-Galiano E, Genovesi P, Heywood HV, Kueffer C and Richardso MD (2013) In book: Late lessons from early warning: science, precaution, innovation. Lessons for preventing harm, Chapter: Invasive alien species: a growing but neglected threat?, Publisher: Euro Envir Age :518-540
4. Chen H, Seiber JN, Hotze M (2014) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agri Food Chem 62:1209–1212
5. Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P (2017) Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. R. Prasad et al. (eds.), Nanotechnology, Springer Nature Singapore Pte Ltd,.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献