Antiviral activities of three Streptomyces spp. against Zucchini yellow mosaic virus (ZYMV) infecting squash (Cucurbita pepo L.) plants

Author:

Ghanem Gamal A. M.ORCID,Mahmoud Ahmed M. A.,Kheder Ahmed A.,Gebily Doha A. S.,Osamy Asmaa

Abstract

Abstract Background Zucchini yellow mosaic virus (ZYMV) is the major devastating disease worldwide, which leads to substantial economic losses (up to 100%) to yield and fruits quality produced of squash plants. Application of agro-pesticides is efficient and incompatible with organic agriculture and reportedly has harmful effects on human health and ecosystem. Nowadays, Streptomyces spp., a rich source of potential bioactive secondary metabolites, is extensively used to manage various biotic stresses for sustainable agriculture and considered to be eco-friendly. Results An isolate of ZYMV was isolated from squash plants and identified based on biological and molecular characterization using RT-PCR for several genes, i.e., coat protein gene (CP), DAG, P1 and P3 coding regions in the virus RNA, and then, nucleotide sequences were compared to other isolates submitted in GenBank having accession numbers, i.e., OM925548.1, OM925549.1, OM925550.1 and OM925551.1, respectively. Phylogenetic trees of CP, DAG, P1 and P3 sequences compared to other ZYMV nucleotide sequences presented in the GenBank. In order to determine new efficient substances elicitors derived from Streptomyces spp. to control ZYMV, greenhouse trials were designed with seven treatments including culture broth of three Streptomyces spp. (S. sampsonii, S. rochei and S. griseus) individually or in combinations. Early application of Streptomyces spp. revealed potent antiviral activity against ZYMV infection, inhibited virus replication and promoted plant growth as well as induced systemic resistance. Moreover, physiological stress markers as indicators for systemic acquired resistance were distinguished via significantly enhanced proline, phenols and defense-related enzymes, i.e., catalase, superoxide dismutase and glutathione peroxidase by culture broth treatments, despite the presence of infection. Real-time qPCR assay was a more reliable and accurate detection for quantification ZYMV than conventional PCR. The results revealed that the three Streptomyces spp. novel biocontrol agents produced Behenic alcohol (Docosanol) which provided clues to be potential antiviral mechanisms capable to down-regulate P1 gene expression responsible for virus replication and movement from cell to cell to induce systemic infection as well as safe eco-friendly candidates for the controlling approaches against plant viral pathogens. Conclusion Results suggest that the three Streptomyces spp. provided clues as a novel biocontrol agent having potential antiviral with protective activity and eco-friendly alternative pesticides for managing plant viruses.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3