Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48

Author:

Abo-Zaid Gaber AttiaORCID,Matar Saleh Mohamed,Abdelkhalek Ahmed

Abstract

Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 × 107 cfu. mL−1) is performed at 48 h before inoculation with TMV. Peroxidase activity, chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied. Treatment with Actino 48 before TMV inoculation (48 h) induced tomato plants to increase their levels of peroxidase and chitinase enzymes. Furthermore, a significant increase in the concentration of total phenolic compounds was observed in Actino 48 and TMV-treated tomato plants compared to TMV-treated tomato plants alone. Treatment with Actino 48 reduced the TMV accumulation level (53.8%) compared to treatment with the virus alone. Actino 48 induced plant growth, where the fresh and dry weights of tomato plants increased. Additionally, significant increases of the PAL, PR-1, CHS, and PR-3 transcripts were observed. On the other hand, a higher induction of PR-2 was only observed in TMV-treated tomato plants. In conclusion, S. cellulosae isolate Actino 48 can be used as a biocontrol agent for the reduction of symptoms and severity of TMV.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference77 articles.

1. The Limonoids and Their Antitobacco Mosaic Virus (TMV) Activities from Munronia unifoliolata Oliv.

2. Comparative analysis of the suppressor activity of tobacco mosaic virus proteins in the tomato plant;Abdelkhalek;Jordan J. Biol. Sci.,2018

3. Top 10 plant viruses in molecular plant pathology

4. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites;Ara;Afr. J. Biotechnol.,2012

5. Bacillus velezensis PEA1 Inhibits Fusarium oxysporum Growth and Induces Systemic Resistance to Cucumber Mosaic Virus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3