Models to quantify excretion of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets

Author:

Jørgensen Henry,Prapaspongsa Trakarn,Vu Van Thi Khanh,Poulsen Hanne Damgaard

Abstract

Abstract Modern pig production contributes to many environmental problems that relate to manure, especially in areas with highly intensive production systems and in regions like Asia where the regulative control is not effective. Therefore, the objective of this study was to use three different pig diets varying in dietary protein, fibre and fat as representative for Danish (DK), Thai (TH) and Vietnamese (VN) pig production to develop and evaluate different approaches to predict/calculate excretion from growing pigs in comparison with the experimentally determined values. Nine female growing pigs were used in a digestibility and balance experiment. Excretion of dry matter (DM), nitrogen (N), phosphorus (P) and carbon (C) of the experimental diets were determined. Due to the highest dietary fibre content, VN had the lowest digestibility of N, P and C (73, 49, and 73%, respectively) compared with the DK and TH pig diets. From the known diet composition using standard table values on chemical and nutrient digestibly, high accuracy (bias) and low variation was found and the results could be used for prediction on chemical composition and excretion in faeces and urine in growing pigs. Calculation based on standard values regarding nutrient retention in the pig body as used in the Danish manure normative system (DMNS) showed likewise to be quite useful for quantifying the total excretion of N and P. Overall, the results demonstrate that simple models that require cheap and normally available information on dietary nutrients can give useful information on nutrient excretion in growing pigs.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3