Skeletal muscle pathology of infantile Pompe disease during long-term enzyme replacement therapy

Author:

Prater Sean N,Patel Trusha T,Buckley Anne F,Mandel Hanna,Vlodavski Eugene,Banugaria Suhrad G,Feeney Erin J,Raben Nina,Kishnani Priya S

Abstract

Abstract Background Pompe disease is an autosomal recessive metabolic neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). It has long been believed that the underlying pathology leading to tissue damage is caused by the enlargement and rupture of glycogen-filled lysosomes. Recent studies have also implicated autophagy, an intracellular lysosome-dependent degradation system, in the disease pathogenesis. In this study, we characterize the long-term impact of enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) on lysosomal glycogen accumulation and autophagy in some of the oldest survivors with classic infantile Pompe disease (IPD). Methods Muscle biopsies from 8 [4 female, 4 male; 6 cross-reactive immunologic material (CRIM)-positive, 2 CRIM-negative] patients with a confirmed diagnosis of classic IPD were examined using standard histopathological approaches. In addition, muscle biopsies were evaluated by immunostaining for lysosomal marker (lysosomal-associated membrane protein-2; LAMP2), autophagosomal marker (microtubule-associated protein 1 light chain 3; LC3), and acid and alkaline ATPases. All patients received rhGAA by infusion at cumulative biweekly doses of 20–40 mg/kg. Results Median age at diagnosis of classic IPD was 3.4 months (range: 0 to 6.5 months; n = 8). At the time of muscle biopsy, the patients’ ages ranged from 1 to 103 months and ERT duration ranged from 0 (i.e., baseline, pre-ERT) to 96 months. The response to therapy varied considerably among the patients: some patients demonstrated motor gains while others experienced deterioration of motor function, either with or without a period of initial clinical benefit. Skeletal muscle pathology included fiber destruction, lysosomal vacuolation, and autophagic abnormalities (i.e., buildup), particularly in fibers with minimal lysosomal enlargement. Overall, the pathology reflected clinical status. Conclusions This is the first study to investigate the impact of rhGAA ERT on lysosomal glycogen accumulation and autophagic buildup in patients with classic IPD beyond 18 months of treatment. Our findings indicate that ERT does not fully halt or reverse the underlying skeletal muscle pathology in IPD. The best outcomes were observed in the two patients who began therapy early, namely at 0.5 and 1.1 months of age.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3