Author:
Chakrabarti Mrinmay,Ghorai Suvankar,Mani Saravana KK,Ghosh Ananta K
Abstract
Abstract
Background
Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11) in its genome. Some of its genome segments (S2 and S6-S11) have been previously characterized but genome segments encoding viral capsid have not been characterized.
Results
In this study genome segments 1 (S1) and 3 (S3) of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV), Lymantria dispar CPV (LdCPV), and Dendrolimus punctatus CPV (DpCPV). The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs) by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein.
Conclusion
Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3 encoded viral structural proteins can self assemble to form viral outer capsid and S1 encoded protein remains associated with it as inner capsid to maintain the stability. Further studies will help to understand the molecular mechanism of capsid formation during cypovirus replication.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference43 articles.
1. Mertens PPC, Rao S, Zhou ZH: Cypovirus. Virus taxonomy. 8th report of the ICTV. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. 2005, Amsterdam: Elsevier Academic Press, 522-533.
2. Payne CC, Mertens PPC: Cytoplasmic polyhedrosis virus. The Reoviridae. Edited by: Joklik WK. 1983, New York: Plenum, 425-504.
3. Belloncik S, Mori K: Cypoviruses. The insect viruses. Edited by: Miller LK, Ball LA. 1998, New York: Plenum, 337-369.
4. Fouillaud M, Morel G: Characterization of cytoplasmic and nuclear polyhedrosis viruses recovered from the nest of Polistes hebraeus F. (Hymenoptera, Vespidae). J Invertebr Pathol. 1994, 64: 89-95. 10.1006/jipa.1994.1075.
5. Arella M, Lavallee C, Belloncik S, Fruichi Y: Molecular cloning and characterization of cytoplasmic polyhedrosis virus polyhedron and a viable deletion mutant gene. J Virol. 1988, 62: 211-217.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献