Effect of mutations in capsid shell protein on the assembly of BmCPV virus-like particles

Author:

Ren Feifei12,Swevers Luc1,Lu Qiuyuan2ORCID,Zhao Yongchao2,Yan Jiming2,Li Haiyun2,Sun Jingchen2ORCID

Affiliation:

1. Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens, Greece

2. Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China

Abstract

Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a typical single-layer capsid dsRNA virus belonging to the genus Cypovirus in the family Reoviridae. The results of cryo-electron microscopy showed that the BmCPV capsid consists of 60 asymmetric units, and each asymmetric unit contains one turret protein (TP), two large protrusion proteins (LPP) and two capsid shell proteins (CSP). CSP has the ability to self-assemble into virus-like particles (VLPs), and the small protrusion domain (SPD) in CSP may play an essential role in the assembly of viral capsids. In this study, three critical amino acid sites, D828, S829 and V945, in the SPD were efficiently mutated (point mutation) based on the principle of PCR circular mutagenesis. Moreover, a multi-gene expression system, Ac-MultiBac baculovirus, was used to produce eight different recombinant VLPs in vitro. Transmission electron microscopy showed that the single site and double site mutations had little effect on the efficiency and morphology of the assembly of VLPs. Still, the simultaneous mutation of the three sites had a significant impact. The experimental results demonstrate that the SPD of CSP plays an essential role in assembly of the viral capsid, which lays the foundation for further analysis of the molecular and structural mechanism of BmCPV capsid assembly.

Funder

National Natural Science Foundation of China

Hellenic Foundation for Research and Innovation

South China Agricultural University Graduate Student Overseas Study Program

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3