Using patient-collected clinical samples and sera to detect and quantify the severe acute respiratory syndrome coronavirus (SARS-CoV)
-
Published:2007-03-27
Issue:1
Volume:4
Page:
-
ISSN:1743-422X
-
Container-title:Virology Journal
-
language:en
-
Short-container-title:Virol J
Author:
He Zhongping,Zhuang Hui,Zhao Chunhui,Dong Qingming,Peng Guoai,Dwyer Dominic E
Abstract
Abstract
Background
Severe acute respiratory syndrome (SARS) caused a large outbreak of pneumonia in Beijing, China, in 2003. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect and quantify SARS-CoV in 934 sera and self-collected throat washes and fecal samples from 271 patients with laboratory-confirmed SARS managed at a single institution.
Results
SARS-CoV detection rates in sera were highest in the first 9 days of illness, whereas detection was highest in throat washes 5–14 days after onset of symptoms. The highest SARS-CoV RT-PCR rates (70.4–86.3%) and viral loads (log10 4.5–6.1) were seen in fecal samples collected 2–4 weeks after the onset of clinical illness. Fecal samples were frequently SARS-CoV RT-PCR positive beyond 40 days, and occasional sera still had SARS-CoV detected after 3 weeks of illness.
Conclusion
In the context of an extensive outbreak with major pressure on hospital resources, patient self-collected samples are an alternative to nasopharyngeal aspirates for laboratory confirmation of SARS-CoV infection.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference18 articles.
1. Organization WH: Cumulative number of reported probable cases of severe acute respiratory syndrome (SARS).[http://www.who.int/csr/sars/country/2004_04_21/en] 2. Liang W, Zhu Z, Guo J, Liu X, He X, Zhou W, Chin DP, Schuchat A, for the Beijing Joint SARS Expert Group: Severe acute respiratory syndrome, Beijing, 2003. Emerging Infectious Diseases 2004, 2004: 25-31. 3. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Corner JA, Lim W, Rollin PE, Nghiem KH, Dowell S, Ling AE, Humphrey C, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes J, LeDuc JW, Bellini WJ, Anderson LJ, Group SARSW: A novel coronavirus associated with severe acute respiratory syndrome. New England Journal of Medicine 2003, 348: 1953-1966. 10.1056/NEJMoa030781 4. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus ADME, Schmitz H, Doerr HW: Identification of a novel virus in patients with severe acute respiratory syndrome. New England Journal of Medicine 2003, 348: 1967-1976. 10.1056/NEJMoa030747 5. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam YC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang NC, Yung RWH, Ng TK, Yuen KY, and members of the SARS Study Group: Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361: 1319-1325. 10.1016/S0140-6736(03)13077-2
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|