Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza
-
Published:2009-04-02
Issue:1
Volume:6
Page:
-
ISSN:1743-422X
-
Container-title:Virology Journal
-
language:en
-
Short-container-title:Virol J
Author:
Guo Ying,Rumschlag-Booms Emily,Wang Jizhen,Xiao Haixia,Yu Jia,Wang Jianwei,Guo Li,Gao George F,Cao Youjia,Caffrey Michael,Rong Lijun
Abstract
Abstract
Background
Avian influenza virus H5N1 is a major concern as a potential global pandemic. It is thought that multiple key events must take place before efficient human-to-human transmission of the virus occurs. The first step in overcoming host restriction is viral entry which is mediated by HA, responsible for both viral attachment and viral/host membrane fusion. HA binds to glycans-containing receptors with terminal sialic acid (SA). It has been shown that avian influenza viruses preferentially bind to α2,3-linked SAs, while human influenza A viruses exhibit a preference for α2,6-linked SAs. Thus it is believed the precise linkage of SAs on the target cells dictate host tropism of the viruses.
Results
We demonstrate that H5N1 HA/HIV pseudovirus can efficiently transduce several human cell lines including human lung cells. Interestingly, using a lectin binding assay we show that the presence of both α2,6-linked and α2,3-linked SAs on the target cells does not always correlate with efficient transduction. Further, HA substitutions of the residues implicated in switching SA-binding between avian and human species did not drastically affect HA-mediated transduction of the target cells or target cell binding.
Conclusion
Our results suggest that a host factor(s), which is yet to be identified, is required for H5N1 entry in the host cells.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference51 articles.
1. Lipatov AS, Govorkova EA, Webby RJ, Ozaki H, Peiris M, Guan Y, Poon L, Webster RG: Influenza: emergence and control. J Virol 2004, 78: 8951-8959. 10.1128/JVI.78.17.8951-8959.2004 2. Palese P: Influenza: old and new threats. Nat Med 2004, 10: S82-87. 10.1038/nm1141 3. Horimoto T, Kawaoka Y: Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 2005, 3: 591-600. 10.1038/nrmicro1208 4. Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS: Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004, 430: 209-213. 10.1038/nature02746 5. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N: Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 1998, 279: 393-396. 10.1126/science.279.5349.393
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|