Author:
De Silva Frank S,Moss Bernard
Abstract
Abstract
Background
Replication of the vaccinia virus genome occurs in cytoplasmic factory areas and is dependent on the virus-encoded DNA polymerase and at least four additional viral proteins. DNA synthesis appears to start near the ends of the genome, but specific origin sequences have not been defined. Surprisingly, transfected circular DNA lacking specific viral sequences is also replicated in poxvirus-infected cells. Origin-independent plasmid replication depends on the viral DNA polymerase, but neither the number of additional viral proteins nor the site of replication has been determined.
Results
Using a novel real-time polymerase chain reaction assay, we detected a >400-fold increase in newly replicated plasmid in cells infected with vaccinia virus. Studies with conditional lethal mutants of vaccinia virus indicated that each of the five proteins known to be required for viral genome replication was also required for plasmid replication. The intracellular site of replication was determined using a plasmid containing 256 repeats of the Escherichia coli lac operator and staining with an E. coli lac repressor-maltose binding fusion protein followed by an antibody to the maltose binding protein. The lac operator plasmid was localized in cytoplasmic viral factories delineated by DNA staining and binding of antibody to the viral uracil DNA glycosylase, an essential replication protein. In addition, replication of the lac operator plasmid was visualized continuously in living cells infected with a recombinant vaccinia virus that expresses the lac repressor fused to enhanced green fluorescent protein. Discrete cytoplasmic fluorescence was detected in cytoplasmic juxtanuclear sites at 6 h after infection and the area and intensity of fluorescence increased over the next several hours.
Conclusion
Replication of a circular plasmid lacking specific poxvirus DNA sequences mimics viral genome replication by occurring in cytoplasmic viral factories and requiring all five known viral replication proteins. Therefore, small plasmids may be used as surrogates for the large poxvirus genome to study trans-acting factors and mechanism of viral DNA replication.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference57 articles.
1. Moss B: Poxviridae: the viruses and their replication. In Fields Virology. Volume 2. 4th edition. Edited by: Fields BN, Knipe DM and Howley PM. Philadelphia, Lippincott-Raven; 2001:2849-2883.
2. Broyles SS: Vaccinia virus transcription. J Gen Virol 2003, 84: 2293-2303. 10.1099/vir.0.18942-0
3. Sridhar P, Condit RC: Selection for temperature-sensitive mutations in specific vaccinia virus genes: isolation and characterization of a virus mutant, which encodes a phosphonoacetic acid-resistant, temperature-sensitive DNA polymerase. Virology 1983, 128: 444-457. 10.1016/0042-6822(83)90269-6
4. Traktman P, Sridhar P, Condit RC, Roberts BE: Transcriptional mapping of the DNA polymerase gene of vaccinia virus. J Virol 1984, 49: 125-131.
5. McDonald WF, Traktman P: Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J Biol Chem 1994, 269: 31190-31197.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献