Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): an in vitro study in MDCK cells

Author:

Mehrbod Parvaneh,Ideris Aini,Omar Rahman Rahman,Hair-Bejo Mohd,Tan Sheau Wei,Kheiri Masoumeh Tavassoti,Tabatabaian Mansoureh

Abstract

Abstract Background The influenza virus is still one of the most important respiratory risks affecting humans which require effective treatments. In this case, traditional medications are of interest. HESA-A is an active natural biological compound from herbal-marine origin. Previous studies have reported that the therapeutic properties of HESA-A are able to treat psoriasis vulgaris and cancers. However, no antiviral properties have been reported. Methods This study was designed to investigate the potential antiviral properties of HESA-A and its effects in modulating TNF-α and IL-6 cytokine levels. HESA-A was prepared in normal saline as a stock solution (0.8 mg/ml, pH = 7.4). Percentages of cell survival when exposed to different concentrations of HESA-A at different time intervals was determined by MTT assay. To study the potential antiviral activity of HESA-A, Madin-Darby Canine Kidney (MDCK) cells were treated with the effective concentration (EC50) of HESA-A (0.025 mg/ml) and 100 TCID50/0.1 ml of virus sample under different types of exposure. Results Based on the MTT method and hemagglutination assay (HA), HESA-A is capable of improving cell viability to 31% and decreasing HA titre to almost 99% in co-penetration exposures. In addition, based on quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), it was found that HESA-A causes decrements in TNF-α and IL-6 cytokine expressions, which was significant for TNF-α (p ≤ 0.05) but not for IL-6. Conclusion In conclusion, HESA-A was effective against influenza infection through suppressing cytokine expression.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference25 articles.

1. Wagman P, Leong M, Simmen K: Development of a novel influenza A antiviral assay. J Virol Methods 2002, 105: 105-114. 10.1016/S0166-0934(02)00088-5

2. Pathumwadee I, Chittima L, Thanyada R, Arthorn L, Maturos M, Panita D, Ornjira A, Krit C, Nopphorn K, Pornthep S, et al.: How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J Mol Graph Model 2008, 27: 342-348. 10.1016/j.jmgm.2008.06.002

3. Moallem S, Ahmadi A, Moshafi M, Taghavi M: Evaluation of fetal toxicity of HESA-A, a natural anticancer agent, in mice. J Kerman Univ Med Sci 2007, 14: 124-133.

4. Ahmadi A, Barikbin B, Naseri M, Mohagheghi M: The effect of HESA-A on psoriasis vulgaris. J Drugs Dermatol 2008, 7: 559-561.

5. Ahmadi A, Mohagheghi M, Fazeli M, Nahavandian B, Bashardoost N, Musavi-Jarahi A, Gharipoor M: HESA-A, a new treatment for breast cancer and choroidal metastasis. Med Sci Monit 2005, 11: 300-303.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3