Abstract
Abstract
Background
Influenza A virus (IAV) infection is a continual threat to the health of animals and humans globally. Consumption of the conventional drugs has shown several side effects and drug resistance. This study was aimed to screen some Iranian medicinal plants extracts and their fractions against influenza A virus.
Methods
Glycyrrhiza glabra (rhizome), Myrtus commonis (leaves), Melissa officinalis (leaves), Hypericum perforatum (aerial parts), Tilia platyphyllos (flower), Salix alba (bark), and Camellia sinensis (green and fermented leaves) were extracted with 80% methanol and fractionated with chloroform and methanol, respectively. The cytotoxicity of the compounds were determined by MTT colorimetric assay on MDCK cells. The effective concentrations (EC50) of the compounds were calculated from the MTT results compared to the negative control with no significant effects on cell viability. The effects of EC50 of the compounds on viral surface glycoproteins and viral titer were tested by HI and HA virological assays, respectively and compared with oseltamivir and amantadine. Preliminary phytochemical analysis were done for promising anti-IAV extracts and fractions.
Results
The most effective samples against IAV titer (P ≤ 0.05) were crude extracts of G. glabra, M. officinalis and S. alba; methanol fractions of M. communis and M. officinalis; and chloroform fractions of M. communis and C. sinensis (fermented) mostly in co- and pre-penetration combined treatments. The potential extracts and fractions were rich in flavonoids, tannins, steroids and triterpenoids.
Conclusion
The outcomes confirmed a scientific basis for anti-influenza A virus capacity of the extracts and fractions from the selected plants for the first time, and correlated their effects with their phytochemical constituents. It is worth focusing on elucidating pure compounds and identifying their mechanism(s) of action.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献