Adaptive pedestrian behaviour for the preservation of group cohesion

Author:

Vizzari Giuseppe,Manenti Lorenza,Crociani Luca

Abstract

Abstract Purpose A crowd of pedestrians is a complex system in which individuals exhibit conflicting behavioural mechanisms leading to self-organisation phenomena. Computer models for the simulation of crowds represent a consolidated type of application, employed on a day-to-day basis to support designers and decision makers. Most state of the art models, however, generally do not consider the explicit representation of pedestrians aggregations (groups) and their implications on the overall system dynamics. This work is aimed at discussing a research effort systematically exploring the potential implication of the presence of groups of pedestrians in different situations (e.g. changing density, spatial configurations of the environment). Methods The paper describes an agent-based model encompassing both traditional individual motivations (i.e. tendency to stay away from other pedestrians while moving towards the goal) and an adaptive mechanism representing the influence of group presence in the simulated population. The mechanism is designed to preserve the cohesion of specific types of groups (e.g. families and friends) even in high density and turbulent situations. The model is tested in simplified scenarios to evaluate the implications of modelling choices and the presence of groups. Results The model produces results in tune with available evidences from the literature, both from the perspective of pedestrian flows and space utilisation, in scenarios not comprising groups; when groups are present, the model is able to preserve their cohesion even in challenging situations (i.e. high density, presence of a counterflow), and it produces interesting results in high density situations that call for further observations and experiments to gather empirical data. Conclusions The introduced adaptive model for group cohesion is effective in qualitatively reproducing group related phenomena and it stimulates further research efforts aimed at gathering empirical evidences, on one hand, and modelling efforts aimed at reproducing additional related phenomena (e.g. leader-follower movement patterns).

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Reference54 articles.

1. Bandini S, Bonomi A, Vizzari G: An analysis of different types and effects of asynchronicity in cellular automata update schemes. Nat Comput 2012,11(2):277–287. 10.1007/s11047-012-9310-4

2. Bandini S, Manzoni S, Vizzari G: Situated cellular agents: a model to simulate crowding dynamics. IEICE Trans Inf Syst Spec Issues Cell Automata 2004,E87-D(3):669–676.

3. Bandini S, Rubagotti F, Vizzari G, Shimura K: An agent model of pedestrian and group dynamics: experiments on group cohesion. In AI*IA Volume 6934 of Lecture Notes in Computer Science. Edited by: Pirrone R, Sorbello F. Springer; 2011:104–116.

4. Batty M: Agent based pedestrian modeling (editorial). Environ Plann B: Plann Des 2001, 28: 321–326. 10.1068/b2803ed

5. Blue VJ, Adler JL: Cellular automata microsimulation of bi-directional pedestrian flows. Transportation Res Rec 1999, 1678: 135–141. 10.3141/1678-17

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3