A practical primer for image-based particle measurements in microplastic research

Author:

Schnepf UweORCID,von Moers-Meßmer Maria Anna LiobaORCID,Brümmer FranzORCID

Abstract

AbstractMicroplastics have been detected in large numbers around the world. Not only their sheer number threatens ecosystems, their biodiversity, and human health, but risks are also posed by particle characteristics such as size and shape. However, at the moment their measurement is neither comprehensive nor harmonized, making the data ineligible for risk assessment. To change this, we propose an image-based workflow, whose six steps are oriented to international guidelines and lessons learned from more developed research fields. Best practices for sample preparation, image acquisition, and digital image processing are reviewed to assure accurate and unbiased particle measurements. On behalf of this, we selected metrics to quantitatively characterize both size and shape. The size of microplastics should be estimated via the maximum Feret’s diameter. Particle shape can be measured via shape descriptors, for which we derive harmonized formulas and interpretation.Roundness,solidity, andelongationwere selected by applying hierarchical agglomerative clustering and correlation analysis. With these three shape descriptors, all currently charaterizable dimensions of particle shape can be measured. Finally, we present actions for quality control as well as quality assurance and give recommendations for method documentation and data reporting. By applying our practical primer, microplastic researchers should be capable of providing informative and comparable data on particle characteristics. From this improved data, we expect to see great progress in risk assessment, meta-analyses, theory testing, and fate modeling of microplastics.

Funder

Ministry of the Environment, Climate Protection and the Energy Sector Baden-Württemberg

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3