Estimating species sensitivity distributions for microplastics by quantitively considering particle characteristics using a recently created ecotoxicity database

Author:

Iwasaki Yuichi,Takeshita Kazutaka M.,Ueda Koji,Naito Wataru

Abstract

AbstractEstimation of a species sensitivity distribution (SSD) by fitting a statistical distribution to ecotoxicity data is a promising approach to deriving “safe” concentrations for microplastics. However, most existing SSDs do not quantitatively consider the diverse characteristics of microplastics, such as particle size and shape. To address this issue, based on 38 mass-based chronic no observed effect concentrations (NOECs) obtained from a recently created database, we estimated SSDs that quantitatively consider the influences of three types of microplastic characteristics (particle length, shape, and polymer type) and habitat of the test species (freshwater vs. marine) by using Bayesian modeling. We selected the best SSD model among all possible models using the widely applicable information criterion. The best SSD model included particle length (range: 0.05–280 μm) and a binary dummy variable corresponding to the fiber shape. Lower chronic NOECs were associated with decreasing particle size and with toxicity tests that included fibers in this model. Combined with the fact that the null model (i.e., an SSD model with no predictor variable) was ranked 27th among the 64 candidate SSD models, our results support the need to incorporate particle characteristics such as length and shape (e.g., fiber) into estimations of SSDs for microplastics. The medians of the hazardous concentration of 5% of species (HC5) for microplastic spheres and fragments, estimated by the posterior distributions of individual parameters in the best SSD model, ranged from 0.02 to 2 µg/L, depending on the particle length (0.1–100 μm). For microplastic fibers, the HC5 values were estimated to be approximately 100 times lower than those for microplastic spheres and fragments with the same particle length. However, the 95% Bayesian credible intervals for HC5 estimates for fibers were considerable, expanded by up to five orders of magnitude. Despite many remaining challenges, the Bayesian SSD modeling utilized in this study provides unique opportunities to simultaneously investigate the influences of multiple microplastic characteristics on the NOECs of multiple species, which would otherwise be difficult to discern.

Funder

Environmental Restoration and Conservation Agency

Japan Chemical Industry Association

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3